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A simple interpolation formula is obtained for the time taken by a cooling 
thermoelement to reach a stationary condition, and an experimental check is 
carried out. 

In the development of thermoelectric cooling devices, calculations must be made of 
not only their static parameters, but also dynamic parameters, and in particular the time 
for a thermobattery to reach a stationary condition. In most studies [1-3], in calculations 
of transient processes in a thermoelement, the authors have concentrated on the possibility 
of excess cooling of the working junction (compared with the stationary), in the initial 
period following the switching on of the current. A solution of the problem of a nonsta- 
tionary temperature distribution in the branches of a thermoelement based on the heat conduc- 
tion equation has a rather unwieldy appearance of a series of decaying exponentials. To 
determine their time-constants, the numerical solution of a transcendental equation is 
required. The problem is considerably simplified if only the time ~ for establishing a sta- 
tionary temperature fall ATst is needed. For the main part of the time interval ~, the 
thermoelement is in a steady-state thermal condition when in the series of exponentials 
for a nonstationary fall of temperature AT(t), there remains only one exponential with 
the smallest characteristic value %: 

AT = ATs t  (1 - -  e-Zt). ( 1 )  

We define �9 as the time in which AT reaches the value differing from ATst by 5%. Since 
e -3 = 0.050, it follows from (i) that �9 = 3/~. 

The time to establish a stationary fall in temperature is considered in [4] without 
solving the heat conduction equation by using a heat balance equation in the working junc- 
tion, but it is not completely clear what is the basis and accuracy of the solution. 

In the present work, a simple approximate solution is found, and checked experimentally, 
for the smallest characteristic value of the heat conduction equation. In accordance with 
the theory of a steady-state thermal condition [5], the time lag of a body in the steady 
state does not depend on heat sources, and is determined only by the dimensions of the 
body and the thermophysical parameters of the material. Therefore, in calculating the 
time-constant, as a first approximation the Peltier and Joule effects need not be considered, 
but a solution obtained of the simpler problem of temperature equalization in a nonuniformly 
heated thermoelement [6]. 

Let us place the origin of coordinates x = 0 on the heat-absorbing contact, and the 
heat-generating junction (x = ~) will be considered as thermostated at temperature T o and 
the heat-absorbing one as adiabatically isolated, so that for temperature T(x, t) we have 
the boundary condition at x = 0: 
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A solution of the heat conduction equation 
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for the variable temperature component T(x, t), will be looked for in the form [6] 

= Te (x)exp (-- ~c t). (4) 

From t h e  h e a t  c o n d u c t i o n  e q u a t i o n ,  and from bounda ry  c o n d i t i o n  ( 2 ) ,  we g e t  f o r  t h e  
values ~c a characteristic equation, which after introducing the dimensionless quantities 

[ 

8 c =  | / -  l, (5 )  ~c 
g 

takes the form 

C =  co (6)  
c?l 

c tgSc=  C8c. (7) 

In the steady state we are interested in the least of the solutions of the character- 
istic equation, since it determines the temperature equalization time 

3 312 1 (8)  
~1 a 8~ 

S o l u t i o n s  o f  (7)  a r e  t a b u l a t e d  [ 7 ] ,  bu t  i t  i s  more c o n v e n i e n t  t o  u se  a s imp le  app rox ima-  
t i o n  o f  t h e  e q u a t i o n ,  which  we o b t a i n  by c o n s i d e r i n g  t h e  l i m i t i n g  c a s e s  C << 1 and C >> 1, 
and keep ing  t h e  two f i r s t  t e rms  in  t h e  e x p a n s i o n  o f  61 in  t e rms  o f  a s m a l l  p a r a m e t e r .  

I n  t h e  c a s e  C << 1, t h e  v a l u e  o f  61 i s  c l o s e  t o  ~/2  (and t h e  s econd  s o l u t i o n  62 = 3~ /2 )  
and to  a f i r s t - o r d e r  a p p r o x i m a t i o n  in  C: 

3 / 2 (  4 8 C )  
8 1 = Y  ( 1 - c ) '  ~ =  a - ~  ~ +  . (9 )  

For  C >> 1 t h e  v a l u e  o f  61 i s  s m a l l ,  61 << 1 (62 ~ ~) and 

8~ = - 3  - + c '  ~ =  a 

Exp ress ions  (9 )  and (10)  f o r  T are no t  much d i f f e r e n t  f rom each o t h e r  ( a p p r o x i m a t e l y  
20% in limiting cases), The interpolation formula 

i s  a c c u r a t e  in  l i m i t i n g  c a s e s ,  and in  t h e  w o r s t  c a s e  (C - 1) i t s  a c c u r a c y  i s  abou t  5%. 

In  a l l  c a s e s ,  t h e  second  s o l u t i o n  t 2 ~ 622 i s  an o r d e r  o r  more g r e a t e r  t h a n  t l ,  t h e r e -  
f o r e ,  s t e a d y - s t a t e  c o n d i t i o n s  a r e  e s t a b l i s h e d  in  a t ime  which  i s  c o n s i d e r a b l y  l e s s  t h a n  
t h e  t ime  t o  e s t a b l i s h  a s t a t i o n a r y  t e m p e r a t u r e ,  which j u s t i f i e s  t h e  u se  o f  t h e  s t e a d y - s t a t e  
a p p r o x i m a t i o n  in  t h e  c a s e  c o n s i d e r e d .  

The t e m p e r a t u r e  e q u a l i z a t i o n  t ime  of  t h e  t h e r m o e l e m e n t  o b t a i n e d  in  t h e  way adduced  
above  c o i n c i d e s  w i t h  t h e  t ime  f o r  t h e  t h e r m o e l e m e n t  t o  r e a c h  a s t a t i o n a r y  c o n d i t i o n  a f t e r  
s w i t c h i n g  on a c o n s t a n t  c u r r e n t  d e n s i t y  j ,  o n l y  i f  i t  i s  j u s t i f i a b l e  t o  assume t h a t  t h e  
i n t e n s i t y  o f  t h e  h e a t  s o u r c e ,  in  p a r t i c u l a r  t h e  P e l t i e r  e f f e c t ,  i s  i n d e p e n d e n t  o f  t e m p e r a -  
t u r e .  Then, t h e  c a l c u l a t e d  t i m e - c o n s t a n t  ~, a c c o r d i n g  t o  ( l l )  t u r n s  o u t  t o  be i n d e p e n d e n t  
o f  c u r r e n t ,  w h i l e  e x p e r i m e n t a l l y ,  a dependence  ~ ( j )  i s  o b s e r v e d .  From t h i s  i t  f o l l o w s  
t h a t  t he  a p p r o x i m a t i o n  o f  t e m p e r a t u r e  i n d e p e n d e n c e  o f  t h e  P e l t i e r  c o e f f i c i e n t  P i s  t o o  
rough ,  and Eq. ( i 1 )  needs  c o r r e c t i o n .  We s h a l l  c o n s i d e r ,  as  in  [ i ] ,  t e m p e r a t u r e  i n d e p e n d e n c e  
o f  t h e  t h e r m a l  emf c o e f f i c i e n t  a = P/T.  Then in  t h e  b o u n d a r y  c o n d i t i o n  (2)  t h e r e  a p p e a r s  
an a d d i t i o n a l  t e rm ~jT and as a r e s u l t  o f  t h i s ,  t h e r e  i s  a t e rm (-'-~js c )  on t h e  RHS o f  
t h e  c h a r a c t e r i s t i c  e q u a t i o n  ( 7 ) .  C o n s i d e r i n g  t h e  c u r r e n t  t o  be s m a l l  and e x p a n d i n g  t h e  
solution 6 c in powers of j in the two limiting cases C << i and C >> i, with the same accu- 
racy as we got the interpolation formula (ii) above, we now find 

( F + @) = 3  z~ 1 +  ~t i �9 (12) 
a 

The s m a l l  p a r a m e t e r  aEj/K in  which  t h e  e x p a n s i o n  i s  made, i s  n e a r  t o  u n i t y  f o r  a c u r r e n t  
o p t i m a l  in  t h e  r eg ime  o f  g r e a t e s t  c o l d  o u t p u t ,  and u s u a l l y  s m a l l e r  in  t h e  r eg ime  o f  g r e a t e s t  
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Fig. i. Dependence of the temperature fall in 
thermoelectric cooling modules i, 2, and 3, on 
the time elapsing after switching on the current. 
The arrows denote points on the curves at which 
the temperature fall had reached 0.95 of the 
steady-state value. AT in K; t in sec. 

refrigeratory coefficient. In the experiments described below, this parameter varied in 
the range 0.25-0.70. We note that in the limiting case C >> i, which is closer to the 
experimental situation, than the contrary case, the fulfillment of both conditions C >> 1 
and ~s << 1 is not needed for getting Eq. (12). It is sufficient that the equality 
C(I + ~Zj/<)-1 >> 1 should be maintained, which is fulfilled for precisely those thermo- 
electric batteries described below in which ~s has the greatest of the values quoted 
above. 

Therefore, the use of Eq. (12) for calculating the time taken by a thermoelement or 
single-cascade thermobattery to reach a stationary condition is justified. 

Let us compare Eq. (12) with results calculated by other methods. In solving the 
thermal conductivity equation by an operational method, the inversion of the Laplace trans- 
form T(s) to the original time function is easily accomplished if the denominator of the 
expression is expanded in powers of s. Thereby, we get Eq. (i) with time-constant de- 
scribed by Eq. (i0), for C >> i, and its accuracy is determined by the difference from 
interpolation formula (ii) (not more than 20%). As regards formulas obtained by Shcherbina 
[4] by solving the heat-balance equation on the heat-absorbing contact, then reducing it 
to a form analogous to (12), its only difference from (12) lies in the numerical term in 
brackets: 0.5 instead of 4/v 2 = 0.4, i.e., the accuracy of the approximate method is in 
the worst case 20%. 

Let us comapre the computational formula (12) with experimental data. 

Testing was carried out on three thermoelectric single-cascade modules manufactured 
from the same semiconducting materials, namely the solid solutions n-Bi2(Te0.gSe0.1) 3 and 
p-(Bi0.25Sb0.Ts)2Te3. Constructional parameters of the modules are given in Table i. On 
the heat-absorbing junctions, was a ceramic plate made of beryllium oxide. 

Tests of the modules were carried out in the VUP-4 vacuum installation, at pressure 
no higher than 10 -2 Pa. The modules, soldered to test plates, were on a thermostatted table 
at temperature 25 • 0.5~ Measurements of the temperatures of the heat-absorbing and 
heat-generating junctions were made with a type TKhA thermoeouple. In Fig. 1 is shown the 
experimentally obtained temperature fall as a function of time from passing through the 
module the optimal current in the maximal temperature-fall mode. Measurements were also 
made with currents 0.7 and 0.5 of the optimal, which correspond to the optimal current 
in the greatest refrigeratory coefficient mode under the conditions in which there is a 
thermal load on the working contact. The time ~ to get to a steady state was determined 
as that time to reach a temperature 0.95 of the stationary value. The steady-state tempera- 
ture fall was determined at t = 10-15 min, when there was no further change in the record- 
ing instrument reading. In Table 2 are given the values of the currents, ATst and experi- 
mentally obtained values of the time-constant in the steady-state regime. 

The calculation of the �9 values was made from Eq. (12) given above. In the calcula- 
tion, we used the parameters of the semiconducting material [8]: c = 0.15 J/(g-K), 7 = 
7.86 g/cm 3, ~ = 1.6 W/(m'K), ~ = 195 DV/K, and the parameters of the beryllium ceramic 
[9], the thermal capacity of which made up the main part of the thermal capacity of the 
contact plate, c c = 1.0 J/(g'K), 7c = 3.1 g/cm 3. The value co, appearing in Eq. (12), 
was obtained from c o = CcTcScs Calculated values of ~ are given in Table 2, together 
with experimental values. From a comparison of these, it is seen that Eq. (12) can be 
used to calculate ~ with an accuracy of the order of 10-20%. Equation (12) also correctly 
describes the weak dependence of ~ on the current magnitude. 
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TABLE i. Parameters of the Thermoelectric Modules 

Module Number of 
number branches 

24 
60 
34 

Length of Cross-section Area of ceram~ Thickness of 
of branches, ic plate, m ~ ceramic plate, branches, m 2 mm 

mm 

3,3 I 0,7X0,9 I 13X8 3,3 0,7X0,9 llx8 5,0 1,9X1,9 15X14 

TABLE 2. Measured and Calculated Values of the Time-Constant 

Module ~, sec (exp.)  T ,  sec ( c a l c . )  
number Current, A ATst, K 

1,10 
0,77 
0,55 

1,00 
0,70 
0,50 

2,90 
2,03 
1,45 

68,0 
63,4 
54,6 

68,2 
63,3 
54,6 

72,2 
65,2 
56,0 

98 
106 
112 

38 
38 
43 

53 
58 
62 

83 
95 

105 

33 
37 
41 

41 
45 
49 

During the calculation, it turned out that the thermal capacity of the contact plate 
influences the time lag of the miniature modules more than the thermal capacity of 
the semiconductor. In connection with this, it is interesting to compare modules 1 and 
2, manufactured from identical semiconductor branches, and having almost identical ceramic 
plates, but differing widely in the times to reach a steady-state condition. The difference 
in T is caused by the fact that module 2 contains considerably more branches than module 
1 which affects �9 through the value co, inversely proportional to n. In other words, in 
each thermoelement of module 2 there is a smaller volume of ceramic than in module i. If, 
indeed, we express T as a function of the quantities C c and K, characterizing the module 
as a whole, then the relative smallness of �9 for module 2 is caused by the larger heat 
conduction of the thermal batteries consisting of a larger number of branches. 

We can attempt to define more precisely the parameters used in the calculation. Tak- 
ing into consideration the thermal capacity of the metallic layers of the contact plate, 
increases in c o are on the order of 30%. Another possible correction is for the temperature de- 
pendence of the parameters of the materials from which the modules are made. The specific 
thermal capacity of beryllium oxide depends especially strongly on temperature, falling 
by 1.8 times with a temperature lowering from room temperature to 200 K [9]. Therefore, 
with lowering of the temperature of the heat-absorbing contact during the transition pro- 
cess the thermal capacity of the beryllium ceramic gradually falls. As follows from the 
calculations made in the Appendix for the limiting case, when the thermal capacity of the 
semiconductor may be neglected in comparison with that of the contact plate, to make an 
approximate calculation of the temperature dependence of the thermal capacity of the latter, 
we must substitute in the equatio~ for the time-constant the thermal capacity of the heat- 
absorbing contact at temperature T = To - 0.68~Tst averaged over the time interval T. Tak- 
ing this into account reduces Co by 30-35%. So the corrections for the thermal capacity 
of the metal and for the temperature dependence of the thermal capacity of the ceramic 
therefore compensate each other rather well. 

APPENDIX 

If the thermal capacity of the semiconductor is not taken into account then the tempera- 
ture conductivity o + ~, and it is not necessary to solve the heat flow equation; it is 
sufficient to solve the heat balance equation for the heat-absorbing contact: 

PI -- I__ la B _ KAT-- C~ dA__T_T = O. (A. i) 
2 dt 

Taking the Peltier coefficient P, the resistance R, and the total heat conduction 
K of the module to be temperature-independent, and the total thermal capacity of the contact 
plate to depend linearly on temperature: 
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Cc (T) = Co - -  C1AT, (A. 2 ) 

we g e t  an e q u a t i o n  f o r  t h e  q u a n t i t y  y ( t )  = a T s t  - A T ( t ) :  

Ky -}- (Co - -  C1ATst ) dy dg _-- 0. (A. 3 ) 
+ CI!t dt 

A s o l u t i o n  o f  t h i s  n o n l i n e a r  e q u a t i o n  w i t h  i n i t i a l  c o n d i t i o n  y = ATst ( t  = 0) may be  
easily obtained in the form of the function t(y): 

t ~ (Co -- CIATst) In ATst~ ~- CI (9' -- ATst) ]J I " (A. 4) 

In accordance with the definition of T, t = �9 at y = 0.5&Tst, and from (A.4), we get: 

3Cc(T) . (A.5) T= K 

A computation of the temperature of the heat absorbing contact averaged over the time 
interval from 0 to T, gives T = T o - 0.68ATst in the case of an exponential approximation 
of AT(t) to ATst , whence, from (A.2) and (A.5), we get 

= ~ (Co --CI" 0.68ATst). (A. 6 ) 

Thus, the time-constant �9 is defined by the thermal capacity of the contact plate at tempera- 
ture T. 

NOTATION 

T, time for the thermoelement to reach a stationary state; AT, fall of temperature 
on the thermoelement: ATst, a stationary temperature fall; %, characteristic value of the 
heat equation, see Eq. (i); t, time; x, coordinate; ~, branch length of the thermoelement; 
T and To, temperatures of the heat absorbing and heat generating contacts, respectively; 
<, heat conduction of the semiconductor; c, specific thermal capacity (of unit mass of 
the semiconductor); y, density of the semiconductor; a, temperature conductivity; Co, thermal 
capacity of commutation plate and cooled body referred to unit area of the transverse sec- 
tion of branches of the thermoelement; C, parameter defined by Eq. (6); 6k, quantity defined 
by Eq. (5); j, current density; ~, thermal emf; P, Peltier coefficient; s, Laplace transform 
variable; n, number of branches in the single-cascade thermobattery; o, cross section of 
branches; c c and Yc, specific thermal capacity and density of the contact plate; S c and 
s area and thickness of the contact plate; I, current; R, resistance of the thermobattery; 
K, heat conduction of thermobattery; Cc, total thermal capacity of contact platei y, tempera- 
ture difference between the heat absorbing contact T and its stationary value; T, tempera- 
ture of the heat absorbing contact averaged over the time interval T. 
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